Differentiation Question 105

Question: The first derivative of the function $ (\sin 2x\cos 2x\cos 3x+{\log_2}{2^{x+3}}) $ with respect to x at $ x=\pi $ is

[MP PET 1998]

Options:

A) 2

B) -1

C) $ -2+{2^{\pi }}{\log _{e}}2 $

D) $ -2+{\log _{e}}2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=\sin 2x.\cos 2x.\cos 3x+{\log_2}{2^{x+3}} $

$ f(x)=\frac{1}{2}\sin 4x\cos 3x+(x+3){\log_2}2 $

$ f(x)=\frac{1}{4}[\sin 7x+\sin x]+x+3 $

Differentiate w.r.t. x, $ f’(x)=\frac{1}{4}[7\cos 7x+\cos x]+1 $

$ f’(x)=\frac{7}{4}\cos 7x+\frac{1}{4}\cos x+1 $ . Hence $ f’(\pi )=-2+1=-1 $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें