Differentiation Question 105

Question: The first derivative of the function $ (\sin 2x\cos 2x\cos 3x+{\log_2}{2^{x+3}}) $ with respect to x at $ x=\pi $ is

[MP PET 1998]

Options:

A) 2

B) -1

C) $ -2+{2^{\pi }}{\log _{e}}2 $

D) $ -2+{\log _{e}}2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)=\sin 2x.\cos 2x.\cos 3x+{\log_2}{2^{x+3}} $

$ f(x)=\frac{1}{2}\sin 4x\cos 3x+(x+3){\log_2}2 $

$ f(x)=\frac{1}{4}[\sin 7x+\sin x]+x+3 $

Differentiate w.r.t. x, $ f’(x)=\frac{1}{4}[7\cos 7x+\cos x]+1 $

$ f’(x)=\frac{7}{4}\cos 7x+\frac{1}{4}\cos x+1 $ . Hence $ f’(\pi )=-2+1=-1 $ .