Differentiation Question 109

Question: $ \underset{x\to 0}{\mathop{\lim }}[ \min (y^{2}-4y+11)\frac{\sin x}{x} ] $ (where [.] denotes the greatest integer function) is

Options:

A) 5

B) 6

C) 7

D) Does not exist

Show Answer

Answer:

Correct Answer: B

Solution:

[b] min $ (y^{2}-4y+11)=min[{{(y-2)}^{2}}+7]=7 $ or $ L=\underset{x\to 0}{\mathop{\lim }}[ \min (y^{2}-4y+11)\frac{\sin x}{x} ] $

$ =\underset{x\to 0}{\mathop{\lim }}[ \frac{7\sin x}{x} ] $ = [a value slightly lesser than 7] $ (| \sin x |<| x |,whenx\to 0) $

$ =\underset{x\to 0}{\mathop{\lim }}[ 7\frac{\sin x}{x} ]=6. $