Differentiation Question 110

Question: $ \underset{x\to 0}{\mathop{\lim }}[ \frac{\sin (sgn(x))}{(sgn(x))} ], $ where [.] denotes the greatest integer function, is equal to

Options:

0

1

-1

D) Does not exist

Show Answer

Answer:

Correct Answer: A

Solution:

$ =\underset{x\to 0+}{\mathop{\lim }}[ \frac{\sin x}{x} ]=\underset{x\to 0+}{\mathop{\lim }}[ \frac{\sin x}{x} ]=1$

$ =\underset{x\to {0^{-}}}{\mathop{\lim }}[ \frac{\sin (x)}{ (x)} ]=\underset{x \to {0^{-}}}{\mathop{\lim }}[ \frac{\sin (x)}{x} ]$

$ =\underset{x\to {0^{-}}}{\mathop{\lim }}\sin(1) $ Hence, the given limit is 0.



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index