Differentiation Question 110

Question: $ \underset{x\to 0}{\mathop{\lim }}[ \frac{\sin (sgn(x))}{(sgn(x))} ], $ where [.] denotes the greatest integer function, is equal to

Options:

A) 0

B) 1

C) -1

D) Does not exist

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ =\underset{x\to 0+}{\mathop{\lim }}[ \frac{\sin x}{ (x)} ]=\underset{x\to 0+}{\mathop{\lim }}[ \frac{\sin 1}{1} ]=0 $

$ =\underset{x\to {0^{-}}}{\mathop{\lim }}[ \frac{\sin (x)}{ (x)} ]=\underset{x \to {0^{-}}}{\mathop{\lim }}[ \frac{\sin (-1)}{-1} ] $

$ =\underset{x\to {0^{-}}}{\mathop{\lim }}[sin1] $ Hence, the given limit is 0.