Differentiation Question 112

Question: $ \frac{d}{dx}{ {{\cos }^{-1}}( \frac{1-x^{2}}{1+x^{2}} ) }= $

[AISSE 1984]

Options:

A) $ \frac{1}{1+x^{2}} $

B) $ -\frac{1}{1+x^{2}} $

C) $ -\frac{2}{1+x^{2}} $

D) $ \frac{2}{1+x^{2}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{d}{dx}{ {{\cos }^{-1}}( \frac{1-x^{2}}{1+x^{2}} ) } $

Let $ \frac{1-x^{2}}{1+x^{2}}=\cos \theta $

Therefore $ 1-x^{2}=(1+x^{2})\cos \theta $

Therefore $ -x^{2}(1+\cos \theta )=\cos \theta -1 $

Therefore $ x^{2}=\frac{1-\cos \theta }{1+\cos \theta }=\frac{2{{\sin }^{2}}\frac{\theta }{2}}{2{{\cos }^{2}}\frac{\theta }{2}}={{\tan }^{2}}\frac{\theta }{2} $

or $ x=\tan \frac{\theta }{2} $ or $ \theta =2{{\tan }^{-1}}x $

So, $ \frac{d}{dx}[\theta ]=\frac{d}{dx}[2{{\tan }^{-1}}x]=\frac{2}{1+x^{2}} $ .