Differentiation Question 113

Question: If $ y\sec x+\tan x+x^{2}y=0 $ , then $ \frac{dy}{dx} $ =

[DSSE 1981; CBSE 1981]

Options:

A) $ \frac{2xy+{{\sec }^{2}}x+y\sec x\tan x}{x^{2}+\sec x} $

B) $ -\frac{2xy+{{\sec }^{2}}x+\sec x\tan x}{x^{2}+\sec x} $

C) $ -\frac{2xy+{{\sec }^{2}}x+y\sec x\tan x}{x^{2}+\sec x} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y\sec x+\tan x+x^{2}y=0 $

$ \Rightarrow \sec x\frac{dy}{dx}+y\sec x\tan x+{{\sec }^{2}}x+2xy+x^{2}\frac{dy}{dx}=0 $

Therefore $ \frac{dy}{dx}=-\frac{2xy+{{\sec }^{2}}x+y\sec x\tan x}{x^{2}+\sec x} $ .