Differentiation Question 117

Question: If $ x>0 $ and $ g $ is a bounded function, then $ \underset{n\to \infty }{\mathop{\lim }}\frac{f(x)e^{nx}+g(x)}{e^{nx}+1} $ is

Options:

A) 0

B) $ f(x) $

C) $ g(x) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] Given that, x > 0 and g(x) is bounded function. $ Limit=\underset{n\to \infty }{\mathop{\lim }}\frac{f(x)e^{nx}+g(x)}{e^{nx}+1} $

$ =\underset{n\to \infty }{\mathop{\lim }}\frac{f(x)}{1+( \frac{1}{e^{nx}} )}+\frac{g(x)}{e^{nx}+1}=\frac{f(x)}{1+0}+\frac{finite}{\infty } $

$ =f(x) $