Differentiation Question 121

Question: $ \underset{x\to 0}{\mathop{\lim }}\frac{\sin [cosx]}{1+[cosx]} $ ( $ [\cdot ] $ denotes the greatest integer function)

Options:

A) Equal to 1

B) Equal to 0

C) Does not exist

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] L.H.L $ =\underset{x\to 0-}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }}\frac{\sin [cosh]}{1+[cosh]}=\frac{\sin (0)}{1+0}=0 $

$ (\therefore h>0\Rightarrow cosh<1) $ R.H.L. $ =\underset{x\to 0+}{\mathop{\lim }}f(x)=\underset{h\to 0}{\mathop{\lim }}\frac{\sin [cosh]}{1+[cosh]}=\frac{\sin (0)}{1+0}=0 $