Differentiation Question 129

Question: If $ x_1=3 $ and $ {x _{n+1}}=\sqrt{2+x _{n},}n\ge 1, $ then $ \underset{n\to \infty }{\mathop{\lim }}x _{n} $ is equal to

Options:

A) $ -1 $

B) $ 2 $

C) $ \sqrt{5} $

D) $ 3 $

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ {x _{n+1}}=\sqrt{2+x _{n}}\Rightarrow \lim {x _{n+1}}=\sqrt{2+\lim x _{n}} $
$ \Rightarrow t=\sqrt{2+t} $

$ [\because \lim {x _{n+1}}=limx _{n}] $
$ \Rightarrow t^{2}-t-2=0\Rightarrow (t-2)(t+1)=0\Rightarrow t=2. $