Differentiation Question 133
Question: If $ y=\frac{{{(1-x)}^{2}}}{x^{2}} $ , then $ \frac{dy}{dx} $ is
[MP PET 1999]
Options:
A) $ \frac{2}{x^{2}}+\frac{2}{x^{3}} $
B) $ -\frac{2}{x^{2}}+\frac{2}{x^{3}} $
C) $ -\frac{2}{x^{2}}-\frac{2}{x^{3}} $
D) $ -\frac{2}{x^{3}}+\frac{2}{x^{2}} $
Show Answer
Answer:
Correct Answer: D
Solution:
$ y=\frac{1+x^{2}-2x}{x^{2}}=\frac{1}{x^{2}}+1-\frac{2}{x}\Rightarrow \frac{dy}{dx}=-\frac{2}{x^{3}}+\frac{2}{x^{2}} $ .