Differentiation Question 135

Question: If $ {{\sin }^{2}}x+2\cos y+xy=0 $ , then $ \frac{dy}{dx}= $

[AI CBSE 1980]

Options:

A) $ \frac{y+2\sin x}{2\sin y+x} $

B) $ \frac{y+\sin 2x}{2\sin y-x} $

C) $ \frac{y+2\sin x}{\sin y+x} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ {{\sin }^{2}}x+2\cos y+xy=0 $

$ \Rightarrow 2\sin x\cos x-2\sin y\frac{dy}{dx}+y+x\frac{dy}{dx}=0 $

$ \therefore \frac{dy}{dx}=\frac{y+\sin 2x}{2\sin y-x} $ .