Differentiation Question 135
Question: If $ {{\sin }^{2}}x+2\cos y+xy=0 $ , then $ \frac{dy}{dx}= $
[AI CBSE 1980]
Options:
A) $ \frac{y+2\sin x}{2\sin y+x} $
B) $ \frac{y+\sin 2x}{2\sin y-x} $
C) $ \frac{y+2\sin x}{\sin y+x} $
D) None of these
Show Answer
Answer:
Correct Answer: B
Solution:
$ {{\sin }^{2}}x+2\cos y+xy=0 $
$ \Rightarrow 2\sin x\cos x-2\sin y\frac{dy}{dx}+y+x\frac{dy}{dx}=0 $
$ \therefore \frac{dy}{dx}=\frac{y+\sin 2x}{2\sin y-x} $ .