Differentiation Question 136
Question: $ \frac{d}{dx}(e^{x}\log \sin 2x)= $
[AI CBSE 1985]
Options:
A) $ e^{x}(\log \sin 2x+2\cot 2x) $
B) $ e^{x}(\log \cos 2x+2\cot 2x) $
C) $ e^{x}(\log \cos 2x+\cot 2x) $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
$ \frac{d}{dx}(e^{x}\log \sin 2x)=e^{x}\log \sin 2x+2e^{x}\frac{1}{\sin 2x}\cos 2x $
$ =e^{x}\log \sin 2x+e^{x}2\cot 2x $
$ =e^{x}(\log \sin 2x+2\cot 2x). $