Differentiation Question 136

Question: $ \frac{d}{dx}(e^{x}\log \sin 2x)= $

[AI CBSE 1985]

Options:

A) $ e^{x}(\log \sin 2x+2\cot 2x) $

B) $ e^{x}(\log \cos 2x+2\cot 2x) $

C) $ e^{x}(\log \cos 2x+\cot 2x) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d}{dx}(e^{x}\log \sin 2x)=e^{x}\log \sin 2x+2e^{x}\frac{1}{\sin 2x}\cos 2x $

$ =e^{x}\log \sin 2x+e^{x}2\cot 2x $

$ =e^{x}(\log \sin 2x+2\cot 2x). $