Differentiation Question 139

Question: The differential coefficient of $ {{\tan }^{-1}}( \frac{\sqrt{1+x^{2}}-1}{x} ) $ with respect to $ {{\tan }^{-1}} $ x is

[Kurukshetra CEE 1998; RPET 1999]

Options:

A) $ \frac{1}{2} $

B) $ -\frac{1}{2} $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y_1={{\tan }^{-1}}( \frac{\sqrt{1+x^{2}}-1}{x} ) $ and $ y_2={{\tan }^{-1}}x $

Now $ \frac{dy_1}{dx}=\frac{d}{dx}[ {{\tan }^{-1}}\tan \frac{\theta }{2} ], $ [By putting $ x=\tan \theta ] $

Therefore $ \frac{dy_1}{dx}=\frac{d}{dx}[ {{\tan }^{-1}}\tan \frac{\theta }{2} ]=\frac{1}{2(1+x^{2})} $ & $ \frac{dy_2}{dx}=\frac{1}{1+x^{2}} $

Hence $ \frac{dy_1}{dy_2}=\frac{1}{2} $ .