Differentiation Question 14

Question: If $ 2^{x}+2^{y}={2^{x+y}}, $ then the value of $ \frac{dy}{dx} $ at $ x=y=1 $ is

[Karnataka CET 2000]

Options:

A) 0

B) - 1

C) 1

D) 2

Show Answer

Answer:

Correct Answer: B

Solution:

$ 2^{x}+2^{y}={2^{x+y}} $ ; Differentiating w.r.t. x, we get $ 2^{x}(\log 2)+2^{y}(\log 2)\frac{dy}{dx} $ = $ {2^{(x+y)}}.(\log 2)( 1+\frac{dy}{dx} ) $

Therefore $ 2^{x}+2^{y}\frac{dy}{dx}={2^{x+y}}+{2^{x+y}}( \frac{dy}{dx} ) $

Therefore $ \frac{dy}{dx}(2^{y}-{2^{x+y}})={2^{x+y}}-2^{x} $

Therefore $ \frac{dy}{dx}=\frac{{2^{x+y}}-2^{x}}{2^{y}-{2^{x+y}}} $ .
$ \therefore {{( \frac{dy}{dx} )} _{x=y=1}}=\frac{2^{2}-2}{2-2^{2}}=\frac{2}{-2}=-1. $