Differentiation Question 143

Question: If $ y=\frac{1}{1+{x^{\beta -\alpha }}+{x^{\gamma -\alpha }}}+\frac{1}{1+{x^{\alpha -\beta }}+{x^{\gamma -\beta }}}+\frac{1}{1+{x^{\alpha -\gamma }}+{x^{\beta -\gamma }}} $ then $ \frac{dy}{dx} $ is equal to

Options:

A) 0

B) 1

C) $ (\alpha +\beta +\gamma ){x^{\alpha +\beta +\gamma -1}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] we have, $ y=\frac{1}{1+\frac{{x^{\beta }}}{{x^{\alpha }}}+\frac{{x^{\gamma }}}{{x^{\alpha }}}}+\frac{1}{1+\frac{{x^{\alpha }}}{{x^{\beta }}}+\frac{{x^{\gamma }}}{{x^{\beta }}}}+\frac{1}{1+\frac{{x^{\alpha }}}{{x^{\gamma }}}+\frac{{x^{\beta }}}{{x^{\gamma }}}} $

$ =\frac{{x^{\alpha }}}{{x^{\alpha }}+{x^{\beta }}+{x^{\gamma }}}+\frac{{x^{\beta }}}{{x^{\alpha }}+{x^{\beta }}+{x^{\gamma }}}+\frac{{x^{\gamma }}}{{x^{\alpha }}+{x^{\beta }}+{x^{\gamma }}} $

$ =\frac{{x^{\alpha }}+{x^{\beta }}+{x^{\gamma }}}{{x^{\alpha }}+{x^{\beta }}+{x^{\gamma }}}=1 $
$ \therefore \frac{dy}{dx}=0. $