Differentiation Question 145

Question: Let $ f(x)=x{{(-1)}^{[1/x]}},x\ne 0, $ where [x] denotes the greatest integer less than or equal to x then, $ \underset{x\to 0}{\mathop{\lim }}f(x)= $

Options:

A) Does not exist

2

0

-1

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \because [1/x]=integer $
$ \therefore {{(-1)}^{[1/x]}}=1 \text{ or } -1 $

$ \underset{x\to 0}{\mathop{\lim }}x{{(-1)}^{[1/x]}}=\underset{h\to 0}{\mathop{\lim }}h\cdot (-1)^{[1/h]} $

$ =\underset{h\to 0}{\mathop{\lim }}(-h)(1\text{ or }-1)=0 $



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index