Differentiation Question 15

Question: The derivative of $ y={x^{\ln x}} $ is

[AMU 2000]

Options:

A) $ {x^{\ln x}}\ln x $

B) $ {x^{lnx-1}}lnx $

C) $ 2{x^{\ln x-1}}\ln x $

D) $ {x^{\ln x-2}} $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y={x^{\ln x}} $

Therefore $ \ln y={{(\ln x)}^{2}} $

Therefore $ \frac{1}{y}\frac{dy}{dx}=\frac{2\ln x}{x} $

Therefore $ \frac{dy}{dx}=y\frac{2\ln x}{x}=\frac{2({x^{\ln x}})\ln x}{x} $

Therefore $ \frac{dy}{dx}=2{x^{\ln x-1}}\ln x $ .