Differentiation Question 158

Question: If [.] denotes the greatest integer function, then $ \underset{n\to \infty }{\mathop{\lim }}\frac{[x]+[2x]+…+[nx]}{n^{2}} $ is

Options:

A) 0

B) $ x $

C) $ \frac{x}{2} $

D) $ \frac{x^{2}}{2} $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ nx-1<| nx |\le nx. $ Putting $ n=1,2,3,…,n $ and adding them, $ x\Sigma n-n<\sum [nx]\le x\Sigma n $
$ \therefore x.\frac{\Sigma n}{n^{2}}-\frac{1}{n}<\frac{\Sigma [nx]}{n^{2}}\le x.\frac{\Sigma n}{n^{2}} $

  • (i) Now, $ \underset{x\to \infty }{\mathop{\lim }}{ x.\frac{\Sigma n}{n^{2}}-\frac{1}{n} }=x.\underset{n\to \infty }{\mathop{\lim }}\frac{\Sigma n}{n^{2}}-\underset{n\to \infty }{\mathop{\lim }}\frac{1}{n}=\frac{x}{2} $ As the two limits are equal, by (i) $ \underset{n\to \infty }{\mathop{\lim }}\frac{\Sigma [nx]}{n^{2}}=\frac{x}{2}. $