Differentiation Question 167

Question: If $ a=\min {x^{2}+4x+5,x\in R} $ and $ b=\underset{\theta \to 0}{\mathop{\lim }}\frac{1-\cos 2\theta }{{{\theta }^{2}}}, $ then the value of $ \sum\limits _{r=0}^{n}{a^{r}.{b^{n-r}}} $ is

Options:

A) $ \frac{{2^{n+1}}-1}{{{4.2}^{n}}} $

B) $ {2^{n+1}}-1 $

C) $ \frac{{2^{n+1}}-1}{{{3.2}^{n}}} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

[b] $ x^{2}+4x+5={{(x+2)}^{2}}+1\ge 1. $ so, $ a=1 $

$ b=\underset{\theta \to 0}{\mathop{\lim }}\frac{2{{\sin }^{2}}\theta }{{{\theta }^{2}}}=2 $

$ \sum\limits _{r=0}^{n}{a^{r}.{b^{n-r}}=b^{n}+a{b^{n-1}}}+a^{2}{b^{n-2}}+…+a^{n} $

$ =\frac{b^{n}[ 1-{{( \frac{a}{b} )}^{n+1}} ]}{1-\frac{a}{b}}=\frac{2^{n}[ 1-{{( \frac{1}{2} )}^{n+1}} ]}{1-\frac{1}{2}} $

$ =\frac{{2^{n+1}}({2^{n+1}}-1)}{{2^{n+1}}}=({2^{n+1}}-1). $