Differentiation Question 171

Question: $ \underset{x\to 0}{\mathop{\lim }}[ \cos ec^{3}x.\cot x-2{{\cot }^{3}}x.\cos ecx+\frac{{{\cot }^{4}}x}{\sec x} ] $ is equal to

Options:

A) 1

B) -1

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \underset{h\to 0}{\mathop{\lim }}[ \cos ec^{3}x.\cot x-2{{\cot }^{3}}x.\cos ecx+\frac{{{\cot }^{4}}x}{\sec x} ] $

$ =\underset{x\to 0}{\mathop{\lim }}( \frac{\cos x}{{{\sin }^{4}}x}-\frac{2{{\cos }^{3}}x}{{{\sin }^{4}}x}+\frac{{{\cos }^{5}}x}{{{\sin }^{4}}x} ) $

$ =\underset{x\to 0}{\mathop{\lim }}\frac{\cos x{{(1-cos^{2}x)}^{2}}}{{{\sin }^{4}}x}=\underset{x\to 0}{\mathop{\lim }}\cos x=1. $