Differentiation Question 179

Question: If $ y=f( \frac{5x+1}{10x^{2}-3} ) $ and $ f’(x)=\cos x $ , then $ \frac{dy}{dx}= $

[MP PET 1987]

Options:

A) $ \cos ( \frac{5x+1}{10x^{2}-3} )\frac{dy}{dx}( \frac{5x+1}{10x^{2}-3} ) $

B) $ \frac{5x+1}{10x^{2}-3}\cos ( \frac{5x+1}{10x^{2}-3} ) $

C) $ \cos ( \frac{5x+1}{10x^{2}-3} ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Suppose that $ t=\frac{5x+1}{10x^{2}-3}, $ so $ y=f(t) $

$ \therefore \frac{dy}{dx}={f}’(t).\frac{dt}{dx} $

[Since $ f’(x)=\cos x $ ] $ \frac{dy}{dx}=\cos ( \frac{5x+1}{10x^{2}-3} )\frac{d}{dx}( \frac{5x+1}{10x^{2}-3} ). $