Differentiation Question 180

Question: If $ y={{\sec }^{-1}}( \frac{\sqrt{x}+1}{\sqrt{x}-1} )+{{\sin }^{-1}}( \frac{\sqrt{x}-1}{\sqrt{x}+1} ) $ , then $ \frac{dy}{dx}= $

[UPSEAT 1999; AMU 2002; Kerala (Engg.) 2005]

Options:

A) 0

B) $ \frac{1}{\sqrt{x}+1} $

C) 1

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{\sec }^{-1}}( \frac{\sqrt{x}+1}{\sqrt{x}-1} )+{{\sin }^{-1}}( \frac{\sqrt{x}-1}{\sqrt{x}+1} ) $

$ ={{\cos }^{-1}}( \frac{\sqrt{x}-1}{\sqrt{x}+1} )+{{\sin }^{-1}}( \frac{\sqrt{x}-1}{\sqrt{x}+1} )=\frac{\pi }{2} $

Therefore $ \frac{dy}{dx}=0 $ , $ { \because {{\sin }^{-1}}x+{{\cos }^{-1}}x=\frac{\pi }{2} } $ .