Differentiation Question 184

Question: $ \underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}{{[1+{{(cosx)}^{\cos x}}]}^{2}} $ is equal to

Options:

A) Does not exist

B) 1

C) e

D) 4

Show Answer

Answer:

Correct Answer: D

Solution:

[d] Given $ \underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}{{[1+{{(cosx)}^{\cos x}}]}^{2}} $ Let $ y=\underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}{{(cosx)}^{\cos x}} $

$ \log (y)=\underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}(cosx)logcosx $

$ \log (y)=\underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}\frac{\log (cosx)}{\sec (x)}( \frac{\infty }{\infty }form ) $

Applying L-Hospital’s rule $ \log (y)=\underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}\frac{-\sin x}{\cos x(secxtanx)} $

$ =\underset{x\to \frac{{{\pi }^{-}}}{2}}{\mathop{\lim }}(-cosx)=0. $
$ \therefore y=e^{0}=1 $ Now, limits is $ {{(1+1)}^{2}}=2^{2}=4. $