Differentiation Question 186

Question: If $ f(x)=\frac{1}{\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}+b^{2}}} $ , then $ {f}’(x) $ is equal to

[Kurukshetra CEE 1998]

Options:

A) $ \frac{x}{(a^{2}-b^{2})}[ \frac{1}{\sqrt{x^{2}+a^{2}}}-\frac{1}{\sqrt{x^{2}+b^{2}}} ] $

B) $ \frac{x}{(a^{2}+b^{2})}[ \frac{1}{\sqrt{x^{2}+a^{2}}}-\frac{2}{\sqrt{x^{2}+b^{2}}} ] $

C) $ \frac{x}{(a^{2}-b^{2})}[ \frac{1}{\sqrt{x^{2}+a^{2}}}+\frac{1}{\sqrt{x^{2}+b^{2}}} ] $

D) $ (a^{2}+b^{2})[ \frac{1}{\sqrt{x^{2}+a^{2}}}-\frac{2}{\sqrt{x^{2}+b^{2}}} ] $

Show Answer

Answer:

Correct Answer: A

Solution:

$ f(x)=\frac{1}{\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}+b^{2}}} $

$ f(x)=\frac{1}{\sqrt{x^{2}+a^{2}}+\sqrt{x^{2}+b^{2}}}.\frac{\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}+b^{2}}}{\sqrt{x^{2}+a^{2}}-\sqrt{x^{2}+b^{2}}} $

$ f(x)=\frac{1}{a^{2}-b^{2}}[ \sqrt{x^{2}+a^{2}}-\sqrt{x^{2}+b^{2}} ] $

$ f’(x)=\frac{1}{a^{2}-b^{2}}[ \frac{2x}{2\sqrt{x^{2}+a^{2}}}-\frac{2x}{2\sqrt{x^{2}+b^{2}}} ] $

$ f’(x)=\frac{x}{a^{2}-b^{2}}[ \frac{1}{\sqrt{x^{2}+a^{2}}}-\frac{1}{\sqrt{x^{2}+b^{2}}} ] $ .