Differentiation Question 2

Question: If $ \cos (x+y)=y\sin x, $ then $ \frac{dy}{dx}= $

[AI CBSE 1979]

Options:

A) $ -\frac{\sin (x+y)+y\cos x}{\sin x+\sin (x+y)} $

B) $ \frac{\sin (x+y)+y\cos x}{\sin x+\sin (x+y)} $

C) $ -\frac{\sin (x-y)+y\cos x}{\sin x+\sin (x-y)} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \cos (x+y)=(y\sin x) $

Therefore $ -\sin (x+y)( 1+\frac{dy}{dx} )=y\cos x+\sin x\frac{dy}{dx} $

Therefore $ \frac{dy}{dx}=-\frac{y\cos x+\sin (x+y)}{\sin (x+y)+\sin x} $ .