Differentiation Question 20

Question: If $ y=\sqrt{x+\sqrt{x+\sqrt{x+……..to}}}\infty ,then\frac{dy}{dx}= $

[RPET 2002]

Options:

A) $ \frac{x}{2y-1} $

B) $ \frac{2}{2y-1} $

C) $ \frac{-1}{2y-1} $

D) $ \frac{1}{2y-1} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ y=\sqrt{x+\sqrt{x+\sqrt{x+……\infty }}} $

Therefore $ y=\sqrt{x+y} $

Therefore $ \frac{{{\partial }^{2}}u}{\partial y^{2}}=\frac{1}{u}-\frac{{{(y-b)}^{2}}}{u^{3}} $

Therefore $ 2y\frac{dy}{dx}=1+\frac{dy}{dx} $

Therefore $ \frac{dy}{dx}(2y-1)=1 $

Therefore $ \frac{dy}{dx}=\frac{1}{2y-1} $ .