Differentiation Question 201

Question: Let g (x) be the inverse of an invertible function $ f(x) $ which is differentiable at x = c, then $ g’(f(c)) $ equals

Options:

A) $ f’(c) $

B) $ \frac{1}{f’(c)} $

C) $ f(c) $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

Since $ g(x) $ is the inverse of function $ f(x) $ , therefore $ gof(x)=I(x) $ for all x. Now $ gof(x)=I(x),\ \ \forall x $

$ $
$ \Rightarrow gof(x)=x,\ \ \forall x $
$ \Rightarrow $ $ (gof)’(x)=1,\ \ \forall x $

Therefore $ g’(f(x))f’(x)=1,\ \ \forall x $

(using chain rule)

Therefore $ g’(f(x))=\frac{1}{f’(x)},\ \ \forall x\Rightarrow g’(f(c))=\frac{1}{f’(c)} $ (putting x=c)