Differentiation Question 206

Question: If $ \underset{x\to a}{\mathop{\lim }}[ \frac{f(x)}{g(x)} ] $ exist, then which one of the following correct-

Options:

A) Both $ \underset{x\to a}{\mathop{\lim }}f(x) $ and $ \underset{x\to a}{\mathop{\lim }}g(x) $ must exist

B) $ \underset{x\to a}{\mathop{\lim }}f(x) $ need not exist but $ \underset{x\to a}{\mathop{\lim }}g(x) $ must exist

C) Both $ \underset{x\to a}{\mathop{\lim }}f(x) $ and $ \underset{x\to a}{\mathop{\lim }}g(x) $ need not exist

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

[d] $ f(x)=x,g(x)=\frac{1}{x} $

$ \underset{x\to 0}{\mathop{\lim }}f(x)=0,\underset{x\to 0}{\mathop{\lim }}g(x)= $ does not exist But $ \underset{x\to 0}{\mathop{\lim }}[ \frac{f(x)}{g(x)} ]=\underset{x\to 0}{\mathop{\lim }}[ x^{2} ]=0 $ Hence, none of these is only true option.



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें