Differentiation Question 207

Question: The value of $ \underset{n\to \infty }{\mathop{\lim }}[ \sqrt[3]{{{(n+1)}^{2}}}-\sqrt[3]{{{(n-1)}^{2}}} ] $ is

Options:

A) 1

B) -1

C) 0

D) $ -\infty $

Show Answer

Answer:

Correct Answer: C

Solution:

[c] $ \underset{n\to \infty }{\mathop{\lim }}[ \sqrt[3]{{{(n+1)}^{2}}}-\sqrt[3]{{{(n-1)}^{2}}} ] $

$ =\underset{n\to \infty }{\mathop{\lim }}{n^{2/3}}[ {{( 1+\frac{1}{n} )}^{2/3}}-{{( 1-\frac{1}{n} )}^{2/3}} ] $

$ =\underset{n\to \infty }{\mathop{\lim }}{n^{2/3}}[ ( 1+\frac{2}{3}.\frac{1}{n}+\frac{\frac{2}{3}( \frac{2}{2}-1 )}{2!}\frac{1}{n^{2}}… )-( 1-\frac{2}{3}.\frac{1}{n}+\frac{\frac{2}{3}( \frac{2}{3}-1 )}{2!}\frac{1}{n^{2}}… ) ] $

$ =\underset{n\to \infty }{\mathop{\lim }}{n^{2/3}}[ \frac{4}{3}.\frac{1}{n}+\frac{8}{81}.\frac{1}{n^{3}}+… ] $

$ =[ \frac{4}{3}.\frac{1}{{n^{1/3}}}+\frac{8}{81}.\frac{1}{{n^{7/3}}}+… ]=0 $