Differentiation Question 218

Question: If $ y=\frac{\sqrt{x^{2}+1}+\sqrt{x^{2}-1}}{\sqrt{x^{2}+1}-\sqrt{x^{2}-1}} $ , then $ \frac{dy}{dx}= $

Options:

A) $ 2x+\frac{2x^{3}}{\sqrt{x^{4}-1}} $

B) $ 2x+\frac{x^{3}}{\sqrt{x^{4}-1}} $

C) $ x+\frac{2x^{3}}{\sqrt{x^{4}-1}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Rationalising, $ y=\frac{2x^{2}+2\sqrt{x^{4}-1}}{2}=x^{2}+{{(x^{4}-1)}^{1/2}} $

Therefore $ \frac{dy}{dx}=2x+\frac{2x^{3}}{\sqrt{x^{4}-1}} $ .