Differentiation Question 223

Question: If $ x=\frac{1-t^{2}}{1+t^{2}} $ and $ y=\frac{2at}{1+t^{2}} $ , then $ \frac{dy}{dx}= $

Options:

A) $ \frac{a(1-t^{2})}{2t} $

B) $ \frac{a(t^{2}-1)}{2t} $

C) $ \frac{a(t^{2}+1)}{2t} $

D) $ \frac{a(t^{2}-1)}{t} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ x=\frac{1-t^{2}}{1+t^{2}} $ and $ y=\frac{2at}{1+t^{2}} $

Differentiating with respect to t, we get $ \frac{dx}{dt}=\frac{(1+t^{2})(0-2t)-(1-t^{2})(0+2t)}{{{(1+t^{2})}^{2}}}=-\frac{4t}{{{(1+t^{2})}^{2}}} $

and $ \frac{dy}{dt}=\frac{(1+t^{2})2a-2at(2t)}{{{(1+t^{2})}^{2}}}=\frac{2a(1-t^{2})}{{{(1+t^{2})}^{2}}} $

Therefore $ \frac{dy}{dx}=\frac{dy/dt}{dx/dt}=\frac{a(1-t^{2})}{-2t}; $
$ \therefore \frac{dy}{dx}=\frac{a(t^{2}-1)}{2t} $ .