Differentiation Question 224

Question: Let $ g(x) $ be the inverse of the function $ f(x) $ and $ f’(x)=\frac{1}{1+x^{3}} $ . Then $ {g}’(x) $ is equal to

[Kurukshetra CEE 1996]

Options:

A) $ \frac{1}{1+{{(g(x))}^{3}}} $

B) $ \frac{1}{1+{{(f(x))}^{3}}} $

C) $ 1+{{(g(x))}^{3}} $

D) $ 1+{{(f(x))}^{3}} $

Show Answer

Answer:

Correct Answer: C

Solution:

Since $ g(x) $ is the inverse of $ f(x) $ , therefore $ f(x)=y $

$ \Leftrightarrow g(y)=x $

Now, $ g’(f(x))=\frac{1}{f’(x)},\forall x $

Therefore $ g’(f(x))=1+x^{3},\ \ \forall x $

Therefore $ g’(y)=1+{{(g(y))}^{3}} $

[using $ f(x)=y\Leftrightarrow x=g(y)] $

Therefore $ g’(x)=1+{{(g(x))}^{3}} $ (replacing y by x).