Differentiation Question 225
Question: If $ y=\sin (\sqrt{\sin x+\cos x}) $ , then $ \frac{dy}{dx}= $
[DSSE 1987]
Options:
A) $ \frac{1}{2}\frac{\cos \sqrt{\sin x+\cos x}}{\sqrt{\sin x+\cos x}} $
B) $ \frac{\cos \sqrt{\sin x+\cos x}}{\sqrt{\sin x+\cos x}} $
C) $ \frac{1}{2}\frac{\cos \sqrt{\sin x+\cos x}}{\sqrt{\sin x+\cos x}}.(\cos x-\sin x) $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ y=\sin (\sqrt{\sin x+\cos x}) $
$ \frac{dy}{dx}=\frac{1}{2}\frac{\cos (\sqrt{\sin x+\cos x})}{\sqrt{\sin x+\cos x}}(\cos x-\sin x) $ .