Differentiation Question 225

Question: If $ y=\sin (\sqrt{\sin x+\cos x}) $ , then $ \frac{dy}{dx}= $

[DSSE 1987]

Options:

A) $ \frac{1}{2}\frac{\cos \sqrt{\sin x+\cos x}}{\sqrt{\sin x+\cos x}} $

B) $ \frac{\cos \sqrt{\sin x+\cos x}}{\sqrt{\sin x+\cos x}} $

C) $ \frac{1}{2}\frac{\cos \sqrt{\sin x+\cos x}}{\sqrt{\sin x+\cos x}}.(\cos x-\sin x) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\sin (\sqrt{\sin x+\cos x}) $

$ \frac{dy}{dx}=\frac{1}{2}\frac{\cos (\sqrt{\sin x+\cos x})}{\sqrt{\sin x+\cos x}}(\cos x-\sin x) $ .