Differentiation Question 228

Question: If $ y=\sqrt{\frac{1+\tan x}{1-\tan x}} $ , then $ \frac{dy}{dx}= $

[AISSE 1981, 83, 84, 85; DSSE 1985; AI CBSE 1981, 83]

Options:

A) $ \frac{1}{2}\sqrt{\frac{1-\tan x}{1+\tan x}}.{{\sec }^{2}}( \frac{\pi }{4}+x ) $

B) $ \sqrt{\frac{1-\tan x}{1+\tan x}}.{{\sec }^{2}}( \frac{\pi }{4}+x ) $

C) $ \frac{1}{2}\sqrt{\frac{1-\tan x}{1+\tan x}}.\sec ( \frac{\pi }{4}+x ) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=\sqrt{( \frac{1+\tan x}{1-\tan x} )} $ or $ y=\sqrt{\tan ( \frac{\pi }{4}+x )} $

$ \frac{dy}{dx}=\frac{1}{2\sqrt{\tan ( \frac{\pi }{4}+x )}}{{\sec }^{2}}( \frac{\pi }{4}+x ) $

$ =\frac{1}{2}\sqrt{[ \frac{1-\tan x}{1+\tan x} ]}{{\sec }^{2}}( \frac{\pi }{4}+x ) $ .