Differentiation Question 239

Question: If $ y={{\cot }^{-1}}( \frac{1+x}{1-x} ) $ , then $ \frac{dy}{dx}= $

[DSSE 1984]

Options:

A) $ \frac{1}{1+x^{2}} $

B) $ -\frac{1}{1+x^{2}} $

C) $ \frac{2}{1+x^{2}} $

D) $ -\frac{2}{1+x^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y={{\cot }^{-1}}( \frac{1+x}{1-x} ) $

$ \frac{dy}{dx}=-\frac{1}{1+{{( \frac{1+x}{1-x} )}^{2}}}[ \frac{(1-x)+(1+x)}{{{(1-x)}^{2}}} ] $

$ =-\frac{2{{(1-x)}^{2}}}{2(1+x^{2})(1-x^{2})}=-\frac{1}{1+x^{2}} $ .