Differentiation Question 244

Question: If $ f(x)={{\tan }^{-1}}( \frac{\sin x}{1+\cos x} ) $ ,then $ f’( \frac{\pi }{3} )= $

[BIT Ranchi 1990]

Options:

A) $ \frac{1}{2(1+\cos x)} $

B) $ \frac{1}{2} $

C) $ \frac{1}{4} $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)={{\tan }^{-1}}( \frac{\sin x}{1+\cos x} )={{\tan }^{-1}}[ \tan \frac{x}{2} ]=\frac{x}{2} $

Therefore $ f’(x)=\frac{1}{2}. $ Hence $ f’( \frac{\pi }{3} )=\frac{1}{2} $ .