Differentiation Question 245

Question: $ \frac{d}{dx}{e^{x\sin x}}= $

[DSSE 1979]

Options:

A) $ {e^{x\sin x}}(x\cos x+\sin x) $

B) $ {e^{x\sin x}}(\cos x+x\sin x) $

C) $ {e^{x\sin x}}(\cos x+\sin x) $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

Let $ y={e^{x\sin x}} $

Therefore $ \log y=x\sin x $

$ \therefore \frac{1}{y}\frac{dy}{dx}=\sin x+x\cos x $ or $ \frac{dy}{dx}={e^{x\sin x}}(\sin x+x\cos x) $ .