Differentiation Question 245
Question: $ \frac{d}{dx}{e^{x\sin x}}= $
[DSSE 1979]
Options:
A) $ {e^{x\sin x}}(x\cos x+\sin x) $
B) $ {e^{x\sin x}}(\cos x+x\sin x) $
C) $ {e^{x\sin x}}(\cos x+\sin x) $
D) None of these
Show Answer
Answer:
Correct Answer: A
Solution:
Let $ y={e^{x\sin x}} $
Therefore $ \log y=x\sin x $
$ \therefore \frac{1}{y}\frac{dy}{dx}=\sin x+x\cos x $ or $ \frac{dy}{dx}={e^{x\sin x}}(\sin x+x\cos x) $ .