Differentiation Question 249

Question: $ \frac{d}{dx}[ \frac{e^{ax}}{\sin (bx+c)} ]= $

[AI CBSE 1983]

Options:

A) $ \frac{e^{ax}[a\sin (bx+c)+b\cos (bx+c)]}{{{\sin }^{2}}(bx+c)} $

B) $ \frac{e^{ax}[a\sin (bx+c)-b\cos (bx+c)]}{\sin (bx+c)} $

C) $ \frac{e^{ax}[a\sin (bx+c)-b\cos (bx+c)]}{{{\sin }^{2}}(bx+c)} $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{d}{dx}( \frac{e^{ax}}{\sin (bx+c)} ) $

$ =\frac{ae^{ax}\sin (bx+c)-be^{ax}\cos (bx+c)}{{{{\sin (bx+c)}}^{2}}} $

$ =\frac{e^{ax}[a\sin (bx+c)-b\cos (bx+c)]}{{{\sin }^{2}}(bx+c)} $ .