Differentiation Question 251

Question: If $ y=\frac{e^{x}\log x}{x^{2}} $ , then $ \frac{dy}{dx}= $

[AI CBSE 1982]

Options:

A) $ \frac{e^{x}[1+(x+2)\log x]}{x^{3}} $

B) $ \frac{e^{x}[1-(x-2)\log x]}{x^{4}} $

C) $ \frac{e^{x}[1-(x-2)\log x]}{x^{3}} $

D) $ \frac{e^{x}[1+(x-2)\log x]}{x^{3}} $

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{dy}{dx}=-2{x^{-3}}e^{x}\log x+{x^{-2}}( e^{x}\log x+\frac{e^{x}}{x} ) $

$ =e^{x}[ \frac{1+(x-2)\log x}{x^{3}} ] $

Aliter: Taking $ \log $ , $ \log y=x+\log \log x-2\log x $

Therefore $ \frac{1}{y}\frac{dy}{dx}=1+\frac{1}{x\log x}-\frac{2}{x} $

Therefore $ \frac{dy}{dx}=\frac{e^{x}\log x}{x^{2}} $ , $ [ \frac{x\log x+1-2\log x}{x\log x} ] $

$ =\frac{e^{x}[(x-2)\log x+1]}{x^{3}} $ .