Differentiation Question 253

Question: If $ y=\frac{e^{2x}\cos x}{x\sin x}, $ then $ \frac{dy}{dx}= $

[AI CBSE 1982]

Options:

A) $ \frac{e^{2x}[(2x-1)\cot x-xcose{c^{2}}x]}{x^{2}} $

B) $ \frac{e^{2x}[(2x+1)\cot x-xcose{c^{2}}x]}{x^{2}} $

C) $ \frac{e^{2x}[(2x-1)\cot x+xcose{c^{2}}x]}{x^{2}} $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ y=\frac{e^{2x}\cos x}{x\sin x} $

Therefore $ \log y=2x+\log \cos x-\log x-\log \sin x $

$ \frac{1}{y}\frac{dy}{dx}=2+( \frac{-\sin x}{\cos x} )-\frac{1}{x}-\frac{\cos x}{\sin x} $

Therefore $ \frac{dy}{dx}=e^{2x}[ \frac{2}{x}\cot x-\frac{1}{x}-\frac{1}{x^{2}}\cot x-\frac{{{\cot }^{2}}x}{x} ] $

$ =\frac{e^{2x}}{x^{2}}[(2x-1)\cot x-xcose{c^{2}}x] $ .