Differentiation Question 254
Question: $ \frac{d}{dx}{{e^{-ax^{2}}}\log (\sin x)}= $
[AI CBSE 1984]
Options:
A) $ {e^{-ax^{2}}}(\cot x+2ax\log \sin x) $
B) $ {e^{-ax^{2}}}(\cot x+ax\log \sin x) $
C) $ {e^{-ax^{2}}}(\cot x-2ax\log \sin x) $
D) None of these
Show Answer
Answer:
Correct Answer: C
Solution:
$ \frac{d}{dx}{{e^{-ax^{2}}}\log (\sin x)} $
$ ={e^{-ax^{2}}}(-2ax).\log (\sin x)+{e^{-ax^{2}}}\cot x $
$ ={e^{-ax}}^{2}[\cot x-2ax\log (\sin x)] $ .