Differentiation Question 254

Question: $ \frac{d}{dx}{{e^{-ax^{2}}}\log (\sin x)}= $

[AI CBSE 1984]

Options:

A) $ {e^{-ax^{2}}}(\cot x+2ax\log \sin x) $

B) $ {e^{-ax^{2}}}(\cot x+ax\log \sin x) $

C) $ {e^{-ax^{2}}}(\cot x-2ax\log \sin x) $

D) None of these

Show Answer

Answer:

Correct Answer: C

Solution:

$ \frac{d}{dx}{{e^{-ax^{2}}}\log (\sin x)} $

$ ={e^{-ax^{2}}}(-2ax).\log (\sin x)+{e^{-ax^{2}}}\cot x $

$ ={e^{-ax}}^{2}[\cot x-2ax\log (\sin x)] $ .