Differentiation Question 256

Question: If $ y=\log x.{e^{(\tan x+x^{2})}}, $ then $ \frac{dy}{dx}= $

[AI CBSE 1985]

Options:

A) $ {e^{(\tan x+x^{2})}}[ \frac{1}{x}+({{\sec }^{2}}x+x)\log x ] $

B) $ {e^{(\tan x+x^{2})}}[ \frac{1}{x}+({{\sec }^{2}}x-x)\log x ] $

C) $ {e^{(\tan x+x^{2})}}[ \frac{1}{x}+({{\sec }^{2}}x+2x)\log x ] $

D) $ {e^{(\tan x+x^{2})}}[ \frac{1}{x}+({{\sec }^{2}}x-2x)\log x ] $

Show Answer

Answer:

Correct Answer: C

Solution:

$ y=\log x.{e^{(\tan x+{x^{2)}}}} $

$ \therefore \frac{dy}{dx}={e^{(\tan x+x^{2})}}.\frac{1}{x}+\log x.{e^{(\tan x+x^{2})}}({{\sec }^{2}}x+2x) $

$ ={e^{(\tan x+x^{2})}}[ \frac{1}{x}+({{\sec }^{2}}x+2x)\log x ] $ .