Differentiation Question 259
Question: $ \frac{d}{dx}{ e^{x}\log (1+x^{2}) }= $
[AI CBSE 1987]
Options:
A) $ e^{x}[ \log (1+x^{2})+\frac{2x}{1+x^{2}} ] $
B) $ e^{x}[ \log (1+x^{2})-\frac{2x}{1+x^{2}} ] $
C) $ e^{x}[ \log (1+x^{2})+\frac{x}{1+x^{2}} ] $
D) $ e^{x}[ \log (1+x^{2})-\frac{x}{1+x^{2}} ] $
Show Answer
Answer:
Correct Answer: A
Solution:
$ \frac{d}{dx}{e^{x}\log (1+x^{2})}=e^{x}\log (1+x^{2})+e^{x}\frac{1}{(1+x^{2})}2x $
$ =e^{x}[ \log (1+x^{2})+\frac{2x}{1+x^{2}} ] $ .