Differentiation Question 259

Question: $ \frac{d}{dx}{ e^{x}\log (1+x^{2}) }= $

[AI CBSE 1987]

Options:

A) $ e^{x}[ \log (1+x^{2})+\frac{2x}{1+x^{2}} ] $

B) $ e^{x}[ \log (1+x^{2})-\frac{2x}{1+x^{2}} ] $

C) $ e^{x}[ \log (1+x^{2})+\frac{x}{1+x^{2}} ] $

D) $ e^{x}[ \log (1+x^{2})-\frac{x}{1+x^{2}} ] $

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d}{dx}{e^{x}\log (1+x^{2})}=e^{x}\log (1+x^{2})+e^{x}\frac{1}{(1+x^{2})}2x $

$ =e^{x}[ \log (1+x^{2})+\frac{2x}{1+x^{2}} ] $ .