Differentiation Question 26

Question: The value of $ \underset{x\to 2}{\mathop{\lim }}\frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2} $ is

Options:

A) $ \frac{1}{8\sqrt{3}} $

B) $ \frac{1}{4\sqrt{3}} $

C) 0

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

[a] $ \underset{x\to 2}{\mathop{\lim }}\frac{\sqrt{1+\sqrt{2+x}}-\sqrt{3}}{x-2} $

$ =\underset{x\to 2}{\mathop{\lim }}\frac{1+\sqrt{2+x}-3}{( \sqrt{1+\sqrt{2+x}}+\sqrt{3} )(x-2)} $

(Rationalizing) $ =\underset{x\to 2}{\mathop{\lim }}\frac{\sqrt{2+x}-2}{( \sqrt{1+\sqrt{2+x}}+\sqrt{3} )(x-2)} $

$ =\underset{x\to 2}{\mathop{\lim }}\frac{(x-2)}{( \sqrt{1+\sqrt{2+x}}+\sqrt{3} )( \sqrt{2+x}+2 )(x-2)} $ (Rationalizing) $ =\frac{1}{(2\sqrt{3})4}=\frac{1}{8\sqrt{3}} $