Differentiation Question 261

Question: If $ y=\frac{2{{(x-\sin x)}^{3/2}}}{\sqrt{x}} $ , then $ \frac{dy}{dx}= $

[Roorkee 1971]

Options:

A) $ \frac{2{{(x-\sin x)}^{3/2}}}{\sqrt{x}}[ \frac{3}{2}.\frac{1-\cos x}{1-\sin x}-\frac{1}{2x} ] $

B) $ \frac{2{{(x-\sin x)}^{3/2}}}{\sqrt{x}}[ \frac{3}{2}.\frac{1-\cos x}{x-\sin x}-\frac{1}{2x} ] $

C) $ \frac{2{{(x-\sin x)}^{1/2}}}{\sqrt{x}}[ \frac{3}{2}.\frac{1-\cos x}{x-\sin x}-\frac{1}{2x} ] $

D) None of these

Show Answer

Answer:

Correct Answer: B

Solution:

$ \log y=\log 2+\frac{3}{2}\log (x-\sin x)-\frac{1}{2}\log x $

$ \Rightarrow \frac{dy}{dx}=y[ \frac{3}{2}.\frac{1-\cos x}{x-\sin x}-\frac{1}{2x} ] $ .