Differentiation Question 265

Question: If $ y={{\sec }^{-1}}( \frac{x+1}{x-1} )+{{\sin }^{-1}}( \frac{x-1}{x+1} ) $ , then $ \frac{dy}{dx}= $

[MNR 1984]

Options:

A) 0

B) 1

C) 2

D) 3

Show Answer

Answer:

Correct Answer: A

Solution:

$ y={{\sec }^{-1}}( \frac{x+1}{x-1} )+{{\sin }^{-1}}( \frac{x-1}{x+1} ) $

or $ y={{\cos }^{-1}}\frac{x-1}{x+1}+{{\sin }^{-1}}( \frac{x-1}{x+1} ) $

$ \therefore y=\frac{\pi }{2}\Rightarrow \frac{dy}{dx}=0 $

$ ( \because {{\sin }^{-1}}x+{{\cos }^{-1}}x=\frac{\pi }{2} ) $ .