Differentiation Question 270

Question: If $ f(x)={{\cos }^{-1}}

[ \frac{1-{{(\log x)}^{2}}}{1+{{(\log x)}^{2}}} ], $ then the value of $ f’(e)= $

[Karnataka CET 1999; Pb. CET 2000]

Options:

A) 1

B) 1/e

C) 2/e

D) $ \frac{2}{e^{2}} $

Show Answer

Answer:

Correct Answer: B

Solution:

$ f(x)={{\cos }^{-1}}[ \frac{1-{{(\log x)}^{2}}}{1+{{(\log x)}^{2}}} ] $

$ =2{{\tan }^{-1}}(\log x) $

Therefore $ {f}’(x)=2.\frac{1}{1+{{(\log x)}^{2}}}.\frac{1}{x}.\text{Therefore }{f}’(e)=\frac{1}{e} $ .