Differentiation Question 271

Question: $ \frac{d}{dx}{ \log ( \frac{e^{x}}{1+e^{x}} ) }= $

Options:

A) $ \frac{1}{1-e^{x}} $

B) $ -\frac{1}{1+e^{x}} $

C) $ -\frac{1}{1-e^{x}} $

D) None of these

Show Answer

Answer:

Correct Answer: D

Solution:

$ \frac{d}{dx}\log ( \frac{e^{x}}{1+e^{x}} )=\frac{1+e^{x}}{e^{x}}\times \frac{d}{dx}( \frac{e^{x}}{1+e^{x}} ) $

$ =\frac{1+e^{x}}{e^{x}}\times \frac{e^{x}}{{{(1+e^{x})}^{2}}}=\frac{1}{1+e^{x}} $ .