Differentiation Question 278

Question: $ \frac{d}{dx}[e^{ax}\cos (bx+c)] $ =

[AISSE 1989]

Options:

A) $ e^{ax}[a\cos (bx+c)-b\sin (bx+c)] $

B) $ e^{ax}[a\sin (bx+c)-b\cos (bx+c)] $

C) $ e^{ax}[\cos (bx+c)-\sin (bx+c)] $

D) None of these

Show Answer

Answer:

Correct Answer: A

Solution:

$ \frac{d}{dx}[e^{ax}\cos (bx+c)] $ = $ \frac{dy}{dx}=-a e^{ax}\cos (bx+c)-b e^{ax}\sin (bx+c)$

= $ e^{ax}[a\cos (bx+c)-b\sin (bx+c)] $ .



Organic Chemistry PYQ

JEE Chemistry Organic Chemistry

Mindmaps Index