Differentiation Question 279

Question: If $ y=\frac{{{\sin }^{-1}}x}{\sqrt{1-x^{2}}} $ , then $ (1-x^{2})\frac{dy}{dx} $ is equal to

[RPET 1995]

Options:

A) $ x+y $

B) $ 1+xy $

C) 1- xy

D) $ xy-2 $

Show Answer

Answer:

Correct Answer: B

Solution:

$ y=\frac{{{\sin }^{-1}}x}{\sqrt{1-x^{2}}} $

$ \frac{dy}{dx}=\frac{\sqrt{1-x^{2}}\frac{1}{\sqrt{1-x^{2}}}-({{\sin }^{-1}}x)\frac{1}{2}\frac{(-2x)}{\sqrt{1-x^{2}}}}{1-x^{2}} $

$ \Rightarrow (1-x^{2})\frac{dy}{dx}=1+x( \frac{{{\sin }^{-1}}x}{\sqrt{1-x^{2}}} )=1+xy $ .