Differentiation Question 287

Question: $ \frac{d}{dx}[ ( \frac{{{\tan }^{2}}2x-{{\tan }^{2}}x}{1-{{\tan }^{2}}2x{{\tan }^{2}}x} )\cot 3x ] $

[AMU 2000]

Options:

A) $ \tan 2x\tan x $

B) $ \tan 3x\tan x $

C) $ {{\sec }^{2}}x $

D) $ \sec x\tan x $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ y=\frac{{{\tan }^{2}}2x-{{\tan }^{2}}x}{1-{{\tan }^{2}}2x{{\tan }^{2}}x} $

= $ \frac{(\tan 2x-\tan x)}{(1+\tan 2x\tan x)}\frac{(\tan 2x+\tan x)}{(1-\tan 2x\tan x)} $

= $ \tan (2x-x)\tan (2x+x) $ = $ \tan x\tan 3x $ . \ $ \frac{d}{dx}[y.\cot 3x]=\frac{d}{dx}[\tan x]={{\sec }^{2}}x $ .