Differentiation Question 287

Question: $ \frac{d}{dx}[ ( \frac{{{\tan }^{2}}2x-{{\tan }^{2}}x}{1-{{\tan }^{2}}2x{{\tan }^{2}}x} )\cot 3x ] $

[AMU 2000]

Options:

A) $ \tan 2x\tan x $

B) $ \tan 3x\tan x $

C) $ {{\sec }^{2}}x $

D) $ \sec x\tan x $

Show Answer

Answer:

Correct Answer: C

Solution:

Let $ y=\frac{{{\tan }^{2}}2x-{{\tan }^{2}}x}{1-{{\tan }^{2}}2x{{\tan }^{2}}x} $

= $ \frac{(\tan 2x-\tan x)}{(1+\tan 2x\tan x)}\frac{(\tan 2x+\tan x)}{(1-\tan 2x\tan x)} $

= $ \tan (2x-x)\tan (2x+x) $ = $ \tan x\tan 3x $ . \ $ \frac{d}{dx}[y.\cot 3x]=\frac{d}{dx}[\tan x]={{\sec }^{2}}x $ .



sathee Ask SATHEE

Welcome to SATHEE !
Select from 'Menu' to explore our services, or ask SATHEE to get started. Let's embark on this journey of growth together! 🌐📚🚀🎓

I'm relatively new and can sometimes make mistakes.
If you notice any error, such as an incorrect solution, please use the thumbs down icon to aid my learning.
To begin your journey now, click on

Please select your preferred language
कृपया अपनी पसंदीदा भाषा चुनें